skip to main content


Search for: All records

Creators/Authors contains: "Nicolas, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Evolutionary processes may have substantial impacts on community assembly, but evidence for phylogenetic relatedness as a determinant of interspecific interaction strength remains mixed. In this perspective, we consider a possible role for discordance between gene trees and species trees in the interpretation of phylogenetic signal in studies of community ecology. Modern genomic data show that the evolutionary histories of many taxa are better described by a patchwork of histories that vary along the genome rather than a single species tree. If a subset of genomic loci harbour trait‐related genetic variation, then the phylogeny at these loci may be more informative of interspecific trait differences than the genome background. We develop a simple method to detect loci harbouring phylogenetic signal and demonstrate its application through a proof‐of‐principle analysis ofPenicilliumgenomes and pairwise interaction strength. Our results show that phylogenetic signal that may be masked genome‐wide could be detectable using phylogenomic techniques and may provide a window into the genetic basis for interspecific interactions.

     
    more » « less
  2. For thousands of years, humans have enjoyed the novel flavors, increased shelf-life, and nutritional benefits that microbes provide in fermented foods and beverages. Recent sequencing surveys of ferments have mapped patterns of microbial diversity across space, time, and production practices. But a mechanistic understanding of how fermented food microbiomes assemble has only recently begun to emerge. Using three foods as case studies (surface-ripened cheese, sourdough starters, and fermented vegetables), we use an ecological and evolutionary framework to identify how microbial communities assemble in ferments. By combining in situ sequencing surveys with in vitro models, we are beginning to understand how dispersal, selection, diversification, and drift generate the diversity of fermented food communities. Most food producers are unaware of the ecological processes occurring in their production environments, but the theory and models of ecology and evolution can provide new approaches for managing fermented food microbiomes, from farm to ferment.

     
    more » « less
    Free, publicly-accessible full text available September 15, 2024
  3. Abstract

    Biomolecular condensates, protein-rich and dynamic membrane-less organelles, play critical roles in a range of subcellular processes, including membrane trafficking and transcriptional regulation. However, aberrant phase transitions of intrinsically disordered proteins in biomolecular condensates can lead to the formation of irreversible fibrils and aggregates that are linked to neurodegenerative diseases. Despite the implications, the interactions underlying such transitions remain obscure. Here we investigate the role of hydrophobic interactions by studying the low-complexity domain of the disordered ‘fused in sarcoma’ (FUS) protein at the air/water interface. Using surface-specific microscopic and spectroscopic techniques, we find that a hydrophobic interface drives fibril formation and molecular ordering of FUS, resulting in solid-like film formation. This phase transition occurs at 600-fold lower FUS concentration than required for the canonical FUS low-complexity liquid droplet formation in bulk. These observations highlight the importance of hydrophobic effects for protein phase separation and suggest that interfacial properties drive distinct protein phase-separated structures.

     
    more » « less
  4. null (Ed.)